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Abstract 

This paper examines the influence of the unsteadiness parameter on 

the maximum wall shear stress in an unsteady stagnation-point 

boundary layer over a vertical flat plate with oscillatory wall 

blowing or suction. The analysis considers a two-dimensional, 

incompressible, viscous flow impinging on the plate, with time-

periodic variations in both the free-stream velocity and the wall 

blowing/suction rate. The formulation follows the approach of Blyth 

and Hall.  

Using similarity transformations, the time-dependent Navier–

Stokes equations are reduced to a single nonlinear ordinary 

differential equation governing the boundary layer. This equation is 

solved numerically using a fully implicit finite-difference scheme. 

Wall shear stress is obtained from the second derivative of the 

similarity function, and its maximum value is tracked over time to 

characterize the flow dynamics. 
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Results show that increasing the blowing parameter raises the peak 

shear stress, whereas larger unsteadiness reduces it. For each set of 

flow conditions, the shear stress reaches a maximum at a specific 

oscillation frequency before asymptotically approaching a steady-

state trend. Higher unsteadiness delays the occurrence of this peak 

and diminishes its magnitude. In certain parameter ranges, the shear 

stress exhibits erratic behavior, indicating incipient divergence.   

Keywords: similarity solution, stagnation-point flow, unsteadiness, 

oscillation, blowing. 
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طبقة لاتبحث هذه الورقة في تأثير عدم استقرار الجريان على أقصى إجهاد قص في 
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قرة ستوكس غير المست–ومن خلال توظيف تحولات التشابه، تم اختزال معادلات نافير
ادلات . وقد حُلَّت المعالطبقة المتاخمةالحاكمة إلى معادلة تشابه غير خطية تصف جريان 

الناتجة عددياً باستخدام مخطط الفروق المحدودة الضمني الكامل. جرى توصيف إجهاد 
لقص عند الجدار من خلال المشتقة الثانية لدالة التشابه، وتم تتبع قيمته العظمى مع ا

  الزمن. 
أظهرت النتائج أن أقصى إجهاد قص يزداد بزيادة معامل النفخ، في حين يتناقص مع 
ازدياد معامل عدم الاستقرار. ولكل مجموعة من معاملات الجريان، يبلغ إجهاد القص 

 اهتزازي محدد قبل أن يتجه نحو سلوك تقاربي.  قيمة عظمى عند تردد

إضافة إلى ذلك، يؤدي ازدياد عدم الاستقرار إلى تأخير حدوث أقصى إجهاد قص وتخفيف 
ذه توفر ه شدته، مع ملاحظة حدوث تباعد في قيمه عند نطاقات معينة من المعاملات.

 .عند الجدار النتائج فهماً جديداً لجريان نقطة الركود غير المستقر مع النفخ

 .حل التشابه، جريان نقطة الركود، عدم الاستقرار، الاهتزاز، النفخ :الكلمات المفتاحية
 

Introduction 

Stagnation points arise in numerous engineering and industrial 

applications, including aerodynamic heating of blunt bodies, vehicle 

flow management, cooling systems, surface coating, and mass 

transfer processes. At a stagnation point, the fluid velocity reduces 

to zero at the surface, forming a viscous boundary layer where wall 

shear stress— the tangential force exerted by the fluid—plays a 

critical role. Accurate prediction of this stress is essential, as it 

directly affects drag, surface erosion, and thermal performance. 

 

The foundational study of stagnation-point boundary layers dates 

back to Hiemenz [1], who first solved the steady two-dimensional 

flow near a flat plate. Howarth later extended this work by 

incorporating viscous effects more rigorously [2]. A pivotal 

advancement came with Blyth and Hall’s model of unsteady 

stagnation-point flow, which has since become a standard 

http://www.doi.org/10.62341/jfhc2358


 

 Volume 38 العدد

  1Partالمجلد 
 

International Science and 

Technology Journal 

 المجلة الدولية للعلوم والتقنية

http://www.doi.org/10.62341/jfhc2358 

 

 حقوق الطبع محفوظة 
 لعلوم والتقنية الدولية ل مجلةلل

 

Copyright © ISTJ   4 

 
 

 

framework for analytical and numerical investigations of time-

dependent impinging flows. 

 

Building on this foundation, recent studies have explored 

increasingly complex scenarios. For instance, Khashi’ie et al. 

[3]examined unsteady separated stagnation-point flows in hybrid 

ferrofluids under magnetic fields and internal heat generation. The 

same authors also investigated suction and nanofluid effects on 

momentum and heat transfer over moving plates [4]. Roșca et al.[5] 

conducted numerical analyses of unsteady mixed convection at 

stagnation points, incorporating slip and nanofluid characteristics. 

Nasir et al. [6] addressed magnetohydrodynamic flows over Riga 

plates, combining electromagnetic and electrohydrodynamic 

influences. While these works provide valuable insights into 

velocity profiles, heat transfer, and skin friction, they offer limited 

analysis of the maximum shear stress within the unsteady boundary 

layer particularly its temporal evolution, dependence on flow 

unsteadiness, and response to wall oscillations. 

 

Despite significant progress, most existing research focuses on 

mean flow properties, surface friction, or thermal behavior, with 

little attention to how peak shear stress varies in time. Specifically, 

the interplay between flow unsteadiness, oscillatory wall 

blowing/suction, and the resulting magnitude, timing, and frequency 

of maximum shear stress remains poorly understood. Moreover, the 

conditions under which this stress may amplify, destabilize, or 

diverge are not well characterized . 

 

This study addresses these gaps by analyzing an unsteady two-

dimensional stagnation-point flow based on the framework of Blyth 

and Hall [7], with time-periodic wall blowing or suction. Using 

similarity transformations, the unsteady Navier–Stokes equations 

are reduced to a single nonlinear ordinary differential equation 

governing the boundary layer. This equation is solved numerically 

http://www.doi.org/10.62341/jfhc2358
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via a fully implicit finite-difference scheme; a robust and widely 

validated method. The primary contribution lies in a systematic 

investigation of how the unsteadiness parameter, oscillation 

frequency, and blowing intensity jointly influence the peak wall 

shear stress. We identify critical regimes where the stress exhibits 

pronounced amplification, delayed onset, or signs of divergence, 

thereby offering new insights into the dynamic behavior of unsteady 

boundary layers under active wall control. 

 

Similarity transformation and Numerical solution. 

   Similarity transformations. 

The problem under consideration is that of two-dimensional version 

of Blyth and Hall [8], flow approaching a vertical flat plate. 

Referring to a set of Cartesian axes ( yx, ), the flat plate occupies

0,  yx .  

The velocity components are expressed as ),,(),,,( tyxvtyxu in the 

yx,  directions, respectively; governing equations, which describe 

the fluid motion, in this case are the two-dimensional unsteady 

Navier-Stokes equations. 

In some simplified cases,  such as a fluid travels through a rigid body 

(e.g, missile, sports ball, automobile, spaceflight vehicle), or in oil 

recovery industry crude oil that can be extracted from an oil field is 

achieved by gas injection, or equivalently, an external flow 

impinges on a stationary point called stagnation-point that is on the 

surface of a submerged body in a flow, of which the velocity at the 

surface of the submerged object is zero.             

A stagnation point flow develops and the streamline is perpendicular 

to the surface of the rigid body. The flow in the vicinity of this 

stagnation point is characterized by Navier-Stokes equations. By 

introducing coordinate variable transformation, the number of 

independent variables is reduced by one or more. The governing 

equations can be simplified to the non-linear ordinary differential 

equations and are analytic solvable. 

http://www.doi.org/10.62341/jfhc2358
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Navier-Stokes Equations. 

The full Navier-Stokes equations are difficult or impossible to 

obtain an exact solution in almost every real situation because of the 

analytic difficulties associated with the non-linearity due to 

convective acceleration. The existence of exact solutions are 

fundamental not only in their own right as solutions of particular 

flows, but also are agreeable in accuracy checks for numerical 

solutions. 

The Navier-Stokes equations are a system of non-linear, coupled 

partial differential equations (PDEs) which are derived from the 

principles of mass and momentum conservation. 

The equation of mass conservation, or continuity equation, can be 

written as: 

                                    
0 yx vu                                             (1)                                                     

The equations of momentum conservation for a fluid are obtained 

from the application of the force-momentum principle, and can be 

written: 

x- momentum : 

          

 yyxxxyxt uuPvuuuu  


1
                  (2)                       

y-  momentum :  

        

 yyxxyyxt vvPvvuvv  


1
                    (3) 

with the parameters, kinematic viscosity   , pressure P  and density 

 . 

The boundary conditions are taken as: 

       




yattUu

yattvvu

e )(

0)(,0 0

              (4)
 

 Where vu &, the velocity components of the flow through the 

boundary layer are, )(0 tv is the velocity of blowing\suction through 

the wall, )(tU e
is unsteady potential velocity component.  

http://www.doi.org/10.62341/jfhc2358
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Near the surface, because of the no slip condition not being satisfied, 

a similarity solution is employed. We defined dimensionless 

similarity variables as  , since:                          

                                        Ax
                                                    

(5) 

                               y
A



                                           (6)

 
Where,

 
A is a constant related with the body geometry, where 

0A .
                                                

The velocity components vandu of the boundary-layer flow are 

assumed to have solutions of the following form: 

                                   
),( tfu  
                                           

(7) 

 
Then, the y-direction velocity component v of the potential flow is 

immediately determined from the continuity equation (1), by 

substituting the foregoing velocity components u  and v . 

                                    

),( tfAv                                            (8)
 Consider the unsteady periodic motion of an incompressible viscous 

fluid in the vicinity of the stagnation point at 0 yx  on a blunt 

body. The potential flow approaches the body in the negative y-

direction, impinges on the surface normally at the stagnation point 

flows away radially in all directions along the surface, and is 

assumed to have unsteady velocity components: 

                                           )(taU e                                               (9) 

Where )(ta is an arbitrary time-dependent function, as a case study 

it was chosen )(ta as:

 

                      

,

sin1

1
)(

t

ta







                     (10)  

Where, is a constant related to free stream acceleration and   is 

the potential flow frequency.                                       
 

When  0  , the problem reduces to the steady case, that 

means AxU e  . 

http://www.doi.org/10.62341/jfhc2358
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Corresponding to A& , we can define the unsteadiness 

parameter D as: 

                                          
A

D   

The equations of motion (1 to 3) for the two-dimensional unsteady 

flow of incompressible viscous fluid in the vicinity of a forward 

stagnation point are reduced to two partial differential equations for 

a potential flow field chosen to vary periodically as a function of 

time, using the following procedure.  

Consider a general form of chain rule, similarity equation describes 

the stream-wise flow in stagnation point flow boundary layer:             

      

    

   ftata
A

ffff
A

tt 















 22
, )]([)(

11
                  

(11)                                                                                                                                                      

 

Initial and boundary conditions. 

The boundary conditions in Eq.(11) in a generalized form and our 

assumptions were applied to achieve a special case which under the 

effect of flow parameters’ changing. 

For that, the boundary conditions are reformed according to our case 

study as: 

 

)(,

),(
1

),0(,0),0( 0

taf

tv
A

tff














                                 

(12) 

)(0 tv was chosen as:    ttv cos)(0                                       (13)                                  

Where Δ is the amplitude of the oscillating flow due to 

blowing/suction at the wall, and  is the oscillation frequency.  

By substituting by Eq.(12) in Eq.(13), we get: 

http://www.doi.org/10.62341/jfhc2358
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t
A

tf 


cos
1

),0(  , hence, ,.A are constants, we can 

introduce, 
A

k
1

, and named it as “blowing parameter”. 

To solve equations (11) numerically, A fully implicit finite 

difference based PDE solver is used (Implicit Euler) 

Results and Discussion.   

Effect of Flow Parameters on wall shear stress wall   

According to our assumptions, )(f  is the similarity function 

refers to the shear stress distribution within the boundary layer, 

since:  

)(

&)(:

))((



















f

A

y
fxA

u
sassumptionourfrom

y

u

y

u



























 

In the following sections we will discuss the results considering the 

influence of flow parameters on shear stress within the boundary 

layer. 

Effect of blowing parameter on the  wall shear stress. 

The following table includes the maximum values of )(f  which 

was found within a period of time don’t exceed 0.6 second from the 

beginning of the unsteady motion, in table (1) were included the 

time at which )(f  has a maximum value at (𝐷 = 2,   𝑘 =

(10, 50, 100, 200). The maximum shear stress may be exist inside 

the viscous boundary layer if &k don’t exceed specific values. But 

for higher values maximum shear stress exist at the wall (at 0 ). 

http://www.doi.org/10.62341/jfhc2358
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These values were searched to correspond the value of 2D , and 

various values of &k . These values were plotted in figure (1). 

Associating to figure (1), it could to be commented the following: 

 Maximum )(f  increases with blowing parameter k . 

 For each k  value, )(f
 
increases rapidly to its maximum 

value, corresponds to a specific value of the oscillation 

parameter at    where   within the range of s1]7030[  . 

     )(f  decreases during the range ]30070[  s1 , to go    

almost constantly after s1300 . 

 

TABLE 1. 𝒇𝜼𝜼 − 𝒑𝒓𝒐𝒇𝒊𝒍𝒆  maximum values indicates maximum 

shear stress  𝒇𝜼𝜼(𝜼)𝒎𝒂𝒙. vs. oscillation frequency 𝝎 at different 

values of blowing parameter K at unsteadiness parameter D= 2  

 

𝝎 

(𝟏
𝒔⁄ ) 

 

 

(k=200) (k=100) (k=50) (k=10) 

1 9.258861 7.299397 8.337737  

5 14.12924 12.33942 10.30847 4.717446 

10 15.61116 14.06375 11.86223 5.029949 

20 16.77482 15.15149 12.77014 4.470926 

30 17.20849 15.50646 12.72162 3.952873 

40 17.41046 15.59892 12.29333 3.577264 

70 17.42147 14.83062 10.56896 2.859268 

100 16.72094 13.42369 8.950562 2.508152 

200 13.28164 9.575809 5.944116 1.977901 

300 7.475956 5.844906 4.210639 1.726169 

400 7.604838 5.611407 3.692614 1.57697 

500 7.696629 5.881554 4.027748 1.657984 

𝑓𝜂𝜂(𝜂)𝑚𝑎𝑥. 𝑎𝑡  𝐷 = 2, within 0.6 s 

http://www.doi.org/10.62341/jfhc2358
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Fig. 1: 𝑓𝜂𝜂 − 𝑝𝑟𝑜𝑓𝑖𝑙𝑒  maximum values indicates maximum shear stress  

𝑓𝜂𝜂(𝜂)𝑚𝑎𝑥. vs. oscillation frequency 𝜔 at different values of 

𝑏𝑙𝑜𝑤𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑘 at 𝑢𝑛𝑠𝑡𝑒𝑎𝑑𝑖𝑛𝑒𝑠𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝐷 = 2 

 

Effect of unsteadiness parameter on the shear stress. 

In the previous section, the effect of the blowing parameter on the 

shear stress was discussed, in this section we’ll discuss the effect of 

the unsteadiness parameter on 𝑓𝜂𝜂(𝜂)𝑚𝑎𝑥., at  𝑘 = 100. 

Associating to table (1) and figure (1), it could to be commented the 

following: 

 Maximum )(f  decreases with the increasing of the 

unsteadiness parameter D . 

0

2

4

6

8

10

12

14

16

18

20

-100 100 300 500

(k=200)

(k=100)

(k=50)

(k=10)

𝐷 = 2
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑓𝜂𝜂 𝜂 𝑒𝑥𝑖𝑠𝑡

𝑑𝑢𝑟𝑖𝑛𝑔 0.6 𝑠
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 For each D , )(f
 
increases rapidly to its maximum value, 

corresponds to a specific value of the oscillation parameter at 

   where   within the range of s1]4030[  . 

 )(f  decreases during the range of ]30040[  s1 , to 

goes almost constantly after s1300 . 

 𝑓𝜂𝜂(𝜂)𝑚𝑎𝑥. is almost the same in the range of 

s/1]300100[  , so the effect of D  is absent.  

 As shown in table (2), at values of 8D , corresponding the 

values of s/110 , 𝑓𝜂𝜂(𝜂)𝑚𝑎𝑥. ⟶ ∞. 

   
TABLE 2: 𝒇𝜼𝜼 − 𝒑𝒓𝒐𝒇𝒊𝒍𝒆  maximum values indicates maximum 

shear stress  𝒇𝜼𝜼(𝜼)𝒎𝒂𝒙. vs. oscillation frequency 𝝎,

𝒃𝒍𝒐𝒘𝒊𝒏𝒈 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓 𝒌 = 𝟏𝟎𝟎 at different values of 

𝒖𝒏𝒔𝒕𝒆𝒂𝒅𝒊𝒏𝒆𝒔𝒔 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓 𝑫 
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Fig.2 : 𝑓𝜂𝜂 − 𝑝𝑟𝑜𝑓𝑖𝑙𝑒  maximum values indicates maximum shear stress  

𝑓𝜂𝜂(𝜂)𝑚𝑎𝑥. vs. oscillation frequency 𝜔, 𝑏𝑙𝑜𝑤𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑘 = 100 

at different values of 𝑢𝑛𝑠𝑡𝑒𝑎𝑑𝑖𝑛𝑒𝑠𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝐷 

 
The observation of the time of maximum shear stress. 

 It was interesting to determine the time at which 𝑓𝜂𝜂(𝜂)𝑚𝑎𝑥. occurs, 

this critical time changes according to flow parameters changing, so 

table (3) and figure (3) are valid only for the corresponding flow 

parameters’ values. 

It was selected for 𝑘 = 100, the unsteadiness parameter values as : 

(𝐷 = 0.5, 2, 6, 10)and     𝜔 (𝑓𝑟𝑜𝑚 5 𝑡𝑜 700 
1

𝑠
).    

By analyzing the data installed in table (3), it could be comment 

that: 

 The time at which 𝑓𝜂𝜂(𝜂)𝑚𝑎𝑥. exists, occurs earlier if 𝐷 was 

smaller. 

 As the oscillation frequency becomes higher,  𝑓𝜂𝜂(𝜂)𝑚𝑎𝑥. occurs 

earlier. 

 For the considered range of 𝜔 values, the maximum time that 

𝑓𝜂𝜂(𝜂) can take to reach its highest value is 𝑡 = 0.6𝑠 at  
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𝜔 = 5 
1

𝑠
, 𝐷 = 2, 𝑘 = 100. Table (3) shows the time at which the 

previous results were illustrated in figure (3). 

TABLE 3.  𝒇𝜼𝜼 − 𝒑𝒓𝒐𝒇𝒊𝒍𝒆  maximum value occurrence time  vs. 

oscillation frequency 𝝎, 𝒃𝒍𝒐𝒘𝒊𝒏𝒈 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓 𝒌 = 𝟏𝟎𝟎 at different 

values of 𝒖𝒏𝒔𝒕𝒆𝒂𝒅𝒊𝒏𝒆𝒔𝒔 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓 𝑫 

 

 

 

 

 

 

 

 

 

 

 

 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛  

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝜔 

 

 

D=0.5 D=2 D=6 D=10 

5 0.35 0.5 0.57 0.6 

10 0.19 0.19 0.28 0.3 

20 0.1 0.12 0.14 0.15 

30 0.08 0.08 0.08 0.1 

40 0.07 0.07 0.08 0.08 

60 0.05 0.06 0.06 0.06 

80 0.05 0.05 0.05 0.05 

90 0.04 0.04 0.04 0.04 

100 0.04 0.04 0.04 0.04 

104 0.04 0.04 0.04 0.04 

110 0.04 0.04 0.04 0.04 

120 0.04 0.04 0.04 0.04 

140 0.03 0.03 0.03 0.03 

160 0.03 0.03 0.03 0.03 

200 0.03 0.03 0.03 0.03 

 𝑡𝑖𝑚𝑒 [𝑓𝜂𝜂(𝜂)𝑚𝑎𝑥.]𝑎𝑡 𝑘 = 100 

http://www.doi.org/10.62341/jfhc2358


 

 Volume 38 العدد

  1Partالمجلد 
 

International Science and 

Technology Journal 

 المجلة الدولية للعلوم والتقنية

http://www.doi.org/10.62341/jfhc2358 

 

 حقوق الطبع محفوظة 
 لعلوم والتقنية الدولية ل مجلةلل

 

Copyright © ISTJ   15 

 
 

 

 

 
Fig.3: The time at which  𝑓𝜂𝜂 − 𝑝𝑟𝑜𝑓𝑖𝑙𝑒  maximum value occurs vs. 

oscillation frequency 𝜔, 𝑏𝑙𝑜𝑤𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑘 = 100 at  different 

values of 𝑢𝑛𝑠𝑡𝑒𝑎𝑑𝑖𝑛𝑒𝑠𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝐷 

 

The results align well with established principles of unsteady 

stagnation-point flows and time-dependent boundary layer 

dynamics. A pronounced peak in wall shear stress occurs at 

intermediate oscillation frequencies (approximately 30–70 rad/s). 

This peak arises from a near-resonant interaction between the 

imposed wall oscillation period and the viscous response time of the 

near-wall fluid. At these frequencies, the oscillatory momentum 

from wall blowing penetrates deeply into the boundary layer, 

amplifying the stream-wise velocity gradient near the wall and 

thereby maximizing shear stress. This behavior is consistent with 

Stokes’ second problem, where peak shear stress occurs when the 

oscillation frequency yields an optimal Stokes layer thickness [8, 9]. 

At higher frequencies (ω ≳ 200 rad/s), the Stokes layer becomes 

extremely thin, confining oscillations to a narrow region adjacent to 

the wall. Viscous effects dominate in this regime, introducing a 
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significant phase lag between wall motion and fluid response. 

Consequently, less oscillatory momentum is transmitted into the 

boundary layer, causing wall shear stress to decline and eventually 

plateau, a trend widely documented in high-frequency oscillatory 

viscous flows[10, 11]. 

Increasing the blowing parameter K leads to a steady, monotonic 

rise in wall shear stress. Physically, K represents a source of 

momentum normal to the wall; greater blowing injects more fluid 

vertically, intensifying the streamwise velocity gradient at the 

surface. This mechanism is well known in laminar boundary layer 

studies: wall injection enhances near-wall velocity gradients, 

thereby increasing shear stress. Similar observations have been 

reported by Zaturska et al. [12] and Al-Sanea & El-Amin [13]. 

The influence of the unsteadiness parameter D is nonlinear, as 

expected. For small to moderate values (D≲1), increasing D 

strengthens the unsteady acceleration in the free stream, enhancing 

flow deformation near the wall and raising shear stress. However, 

for larger D, the phase relationship between the outer flow and wall 

oscillations shifts, leading to boundary layer thickening. This 

reduces the near-wall velocity gradient and causes shear stress to 

decrease. This non-monotonic response agrees with earlier analyses 

of unsteady stagnation-point flows [14, 15], and is additionally 

influenced in the present study by the phase-coupled effect of 

oscillatory wall blowing. 

Overall, the observed trends-the peak-and-decay response with 

respect to ω, the monotonic increase with K, and the non-monotonic 

variation with D - are fully consistent with theoretical expectations 

for unsteady viscous flows subject to periodic wall conditions and 

time-varying free-stream forcing. 

Conclusion  

This study shows that, in unsteady stagnation-point flows with wall 

blowing, the maximum wall shear stress is strongly governed by two 
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non-dimensional parameters: the blowing intensity and the flow 

unsteadiness. Increasing the blowing parameter consistently 

elevates peak shear stress, whereas higher unsteadiness generally 

suppresses it. A critical amplification of shear stress occurs at 

intermediate oscillation frequencies, where resonant-like interaction 

between wall forcing and viscous response is most effective. 

The timing of the peak shear stress is also sensitive to both 

parameters: it occurs earlier at higher oscillation frequencies and 

under lower unsteadiness. Importantly, the analysis identifies 

critical regimes-particularly at specific combinations of frequency, 

blowing, and unsteadiness-where shear stress exhibits extreme 

magnification or signs of divergence. These findings provide 

valuable guidance for applications involving flow control, surface 

loading mitigation, and thermal management near stagnation 

regions.  

Overall, the results underscore the necessity of jointly accounting 

for unsteadiness and active wall forcing in the design and 

optimization of engineering systems featuring stagnation-point 

flows, such as in aerospace thermal protection, turbine cooling, and 

aerodynamic control surfaces. 
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